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i Random Perturbations of Some Special Models

E, In this paper we shall study the convergence of

§§  invariant measures for random perturbations of maps of an

:ﬁi interval and a Lorentz's type model dynamical system.

et These models lack the shadowing property for some

;& pseudo-orbits. Misiurewicz's map treated in Section 2 is

;ﬁ also not uniformly expanding. However, we shall see how to

é$ modify the approach of [Ki] in order to overcome these

-~ complications.

R

;

) .

b 1. Random perturbations of one-dimensional

5? transformations.

R
fﬂ In this section we shall discuss models of random

¢ perturbations of maps of an interval. We shall treat

ig specifically the case of the Lasota-Yorke [LaY] piecewise
ﬁé smooth expanding transformations.
ig Suppose that F:[0,1]~»[0,1] is a map of the unit
‘.. interval M=[0,1] into itself. Random perturbations X;

: : of F are being defined in the same way as in [Ki] and [KK]

LE though we shall impose certain restrictions on measures Qi __t}::;i
. and transition probabilities Pe(x,-) appearing there. We e ;
. shall be interested in the weak convergence of invariant Ol .
j’ measures p° of Markov chains X; with SRR

!i transiton probabilities Pe(x,‘). In the same way as in "_.~“~_]

Y . :

6 ! o
o !
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[Ki) and [KK] we shall assume that all Q; -have densities

Ly 3
Qf with respect to the Lebesgue measure on M = [0,1], i.e.,
for any Borel set I' C M,

0 Q (M = [ 4y (v) ay, (1.1)

e r
O and so Pe(x,-) = Q;x (¢) has the density

"y P (%,Y) = g5, (V). (1.2)

' Before we proceed with our further assumptions let us
Ty discuss first another model due to Boyarsky [Boy] and

;k considered later also by Golosov [Gol] and Collet [Col].
e,

3 They assume that q;(y) = qe(y-x), i.e., this density

Y

Q depends only on the difference (y-x). In view of (1.1)
A ;

()

)

t§ and (1.2) any invariant measure ue of Xi has a density
) .

p® with respect to the Lebesgue measure which satisfies

) the equation

e p°(2) = [ p%(x) P (x,2) ax, (1.3)
M

]

l‘

0

K . 3 €

o and so if d, (y) =g (y-x) then

e

a P°(z) = [ p%(x) a"(z - Fx) ax (1.4)

lﬁ M ‘

}

5 ' -1

. =2 et P Ha iz -y ay

; M| xeF ly

~|

A provided the derivative F'(x) exists for almost all with

" respect to the Lebesgue measure points x € M = [0,1].
Introduce the operator ¢ acting on integrable functions

PTL R TS Y
SO ) .

T 7 N My T, N Y B N AT, A N I A A N
. ed L - * . » o A
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g on [0,1] by the formula

og(y) = ) (@) P (x)|7h (1.5)

-1
XEF Ty
which is called the Frobenius-Perron operator of the map F.

This operator describes the transformation of the density
of an absolutely continuous measure under the action of F,

dv

i.e., if g = ax v€EP (M) then &g is the density of the

measure { such that ((I') = v(F-lr) for any Borel set
IcM. Thus if there exists an absolutely continuous
F-invariant measure then the density of this measure must
be a fixed point of the operator ¢. Vice versa any fixed
point of ¢ which is an integrable function turns out to
be the density of an absolutely continuous invariant
measure. By this reason the study of the Frobenius-Perron
operator plays a decisive part in many works concerning
absolutely continuous measures of one-dimensional
transformations (see Lasota and Yorke [LaY], Misiurewicz
[Mi], Collet and Eckmann [CE1] and [CE2]).

Define another operator e acting on integrable
functions by the formula

“g(z) = [ (eg(¥)) q° (z-y) dy (1.6)
M

which may be called the Frobenius-Perron operator of random

perturbations. In view of (1.4) and (1.5) the density »°

is a fixed point of the operator $¢  whose explicit
representation (1.6) in a convolution form enables one to
obtain uniform in e estimates of its fixed points
essentially in the same way as one estimates variations of
fixed points of the operator ¢ itself. By this technique
Boyarsky [Boy], Golosov [Gol], and Collet [Col] showed for

certain types of maps F that limits of invariant measures

ue of X; as -0 must be absolutely continuous.

Moreover, by this method one can show the convergence of
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the densities pe, as well. However, the condition
q;(y) = qe(y-x) is rather restrictive and, as we shall

see, it excludes interesting models where x; is obtained
by means of a composition of maps chosen independently at
random from a parametric family. Besides, the above :
approach cannot be generalized to arbitrary manifolds.

Next, we shall specify our conditions which are a
one-dimensional version of Assumption II.1l.1.

Assumption 1.1 (a) Transition probabilities of Markov
chains x; have the form Pe(z,-) = Q;z(-) with Q;
satisfying (1.1):

(b) There exist constants a, C > 0, a < 1 and a family of

non-negative functions {rx(f), X€EM = [0,1], €€R! = (-, @)} .
such that \
. -1~ %dist(x,y)
Iy q.(y) € Ce e for all x,y€M, (1.7) 5
1
o
? where
.’:
. dist(x,y) = min(|y-x|, |y-x+1], |y-x-1[), (1.8)
#
e and
i3
b
3 a, -1 1

K qx(Y) $ (1+e)e r (z o(x,yY)) (1.9)
"
f| provided dist(x,y) ¢ el-a, where o(x,y) equals one of

the numbers (y-x), (y-x+1), or (y-x-1) so that
B Y
s lo(x,y) | = dist(x,y); 3
;f (c) The functions rx(f), x€M, f€R' satisfy {
‘ (1) [ Ty ag =1,
- R?
b
i' (ii) r (&) < ¢ ealEl £op a, C>0 .
LY Il

independent of x and ¥,

i. -
X .
:. X 0
v b
‘l
.l
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(iii) There exists C>0 such that if
V; = (E:rx(f) > 0} and av; (6) denotes the 6~

neighborhood in R' of the boundary av; of V;
then

r (§) d€ < cs,
+
3V, (8)

r (E) < r (L) + Cp + x (E)r. (E) (1.11)
X Y av} (cp) X

where p = p((x,),(y,E)) = dist(x,y) + |C-E|

Remark 1.1. The definition (1.8) of the distance
means that we consider the periodic boundary conditions,
i.e., that we identify the endpoints 0 and 1. Another
boundary condition which can be treated by our method is
the reflection condition in the endpoints 0 and 1. This
means that (1.9) remains the same for either

x €[e1™, 1-e17™®] or x <el™ and y 2 x or x > 1-el™®

l-a

and y ¢ %x. But if x < e and Yy < X then one assumes

eq; (Y)(rx[zgé] + rx[- 15111])'1 < 1 + &% (1.12)

e ’

l-a

and if x > 1-e and y > x then

€

eq; (y) (rx[Y_;"_)ﬁ] + rx[Z- X+ ])—1 <1+ &

In this case (1.7) should be replaced by

(3

@ (y) ¢ ce™?

exp(- T ly-x|)

N e e W A N ARG W AR A P B¢ R N e e et T AT A A
. v ) . B - o » D . . . L) id
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if |y-x| > el™ and e > 0 is small enough. We can treat

also the situation when dist(x,y) = [x-y]| and q; (y)
equals zero unless x €[0,1] and y belongs to an open
neighborhood U of [0,1]. This must be complemented by

the condition FU C [0,1) which yields Markov chains X;
defined on U. Boundary conditions do not influence
decisively the study of corresponding random perturbations
and related proofs differ only in details.

In this section we shall work with transformation
satisfying the following conditions.

Assumption 1.2. A map F is piecewise C? and

expanding, i.e., there exist points 0 = @o<ay<ccc<a .= 1
such that the restrictions of F to the open intervals
(ai-l’ a;), i=1,**,0 +1, v 21 are C¢? functions
which can be extended to the closed intervals [ai-l’ ai] as
C? functions (taking at the endpoints right or left
derivatives), and

inflF' ()] = > 1 (1.15)

X

where the infinum is taken over all x €[{0,1]) for which
the derivative F'(x) exists.

Under Assumption 1.2 F is known to have invariant
measures which are absolutely continuous with respect to
the Lebesgue measure on [0,1] (see Lasota and York ([LaY]
and Cornfeld, Fomin, and Sinai [CFS], § 4 of Chapter 7).
Li and York [LiY] showed that in the above situation there
exist at most v ergodic absolutely continuous F-invariant
probability measures. In particular if v = 1 then one
has only one absolutely continuous F-invariant probability
measure.

In order to avoid certain complications we shall
assume that F is continuous with respect to the metric
defined by (1.8), in particular, F(0) = F(l1). We shall
establish the following result.
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Theorem 1.1. Suppose that random perturbations X; &
N
of a map F:[0,1] [0,1] meet the conditions of Assumption ;
1.1, F s continuous with respect to the dist-metric, and I~
I
F satisfies Assumption 1.2, Then all weak limits as e-0 o
»
of probability invariant measures ue of Markov chains Xi a.
are absolutely continuous with respect to the Lebesgue -
measure [0,1]. In particular, if v =1 in Assumption 1.2 Y
,
then the invariant measures ue weakly converge as e=0 '
to the unique absolutely continuous F-invariant probability :a
measure u. :
N
Before the proof we shall discuss certain points o
connected with Theorem 1.1 for the one-parameter family of ’
tent maps y
1 23
sX if 0 ¢ x ¢ 3 -
Fgx = {s(l-x) if % < x <1 (1.16) %
.
~
where 1 < s { 2. These maps meet conditions of Assumption -ﬁ}
‘
1.2 with » =1 and a, = %. First, notice that in »%
general these maps do not have the shadowing property. !u
(]
N
Indeed, let F = FVE . Then c¢ = 2-V2 1is a repelling fixed )
point of F and Fa(%) = c. Take the 6-pseudo-orbit X, = %, oy
X, = Fyy X2 = Fy , X2 =C, X4 = C+5, X = F(X4),"", »_’\.’
Xy, = FXpp,0°c, k= 4,5,-++. Consider the interval ::;
I = (x:]x - %I < %(3—2%5)) then F?(I) is the interval whose >4
left endpoint is c, and so F*(I) is the interval whose N
right endpoint is c¢c. Hence if y € I then x, > ¢ > F'y. 3;
: k+1 1 _ k - o
Since |xk+1 Fy| = Vflxk— F'yl for k > 4 provided NG
“!
Pl
). % 2 Xy 2 !g and % 2 Fky 2 i% we conclude that the orbit
!\‘
of y cannot shadow in any reasonable sense the §-pseudo- N
orbit Xor X1 X2,°°° when 6 is small enough. Therefore ;:‘
we shall need some substitution for the shadowing property ff
when proving Theorem 1.1. »
)
o

O

. &
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For the family of tent maps Fs’ 1 <s {2 we can
consider the following model of random perturbations.

Suppose that 1 < s, < 2 and let ¢f, ¢§,-°~ be
independent random variables with the same uniform
distribution on the interval [-e,e] where 0 < e e <

) so(z—so) ) )
min{s -1, _TEZ:ET— . Consider the Markov chains
e 3 * e @
Xn = F ot ° oF . r:x . (1.17)
so ‘Pn so ‘Pl
Let a =s (1 - (s + ¢e))=e and b = 2(s + e) then
3 ° 2'70 € 2 70

0<a <2%2<b < 1. Moreover if x € [a_, b ] then

e 2 € € €
X; €[ae,b6] for all n=1,2,-*+. Thus we can study the X
invariant measures of X; on the interval [ae,be].

Notice that transition probabilities of Markov chains X;
have the form

P (x,T) = qux(y) dy

r
where

. sc,(2r=z)-1 if  |y-z]| < ezs:l
q(y) = { o if |y-z| > estl (1.18)

Thus this type of random perturbations considered on

(a, be ] with e < e, satisfy conditions of Assumption ;
(] o

1.1 and an application of Theorem 1.1 yields that invariant

measures ue of X; on [a , b ] weakly converge as

[+] e'C)

e » 0 to the unique Fs -invariant absolutely continuous
(o]

€

T

probability measure. Remark, that q;(y) given by (1.18) -
depends essentially on z, and so it cannot be represented

€
as q° (y-z).
Hence the Boyarsky's approach based on the Frobenius-Perron

eI L e e

P ACEN NGNS AL A




operator and described at the beginning of this section

does not work in this situation. If s = 2 then the above
type of random perturbations formally does not satisfy
Assumption 1.1 since in this case we cannot exclude the
point O which is the fixed point for all FS, l1 < s < 2,

and so PE(O,-) will not have density at all. Moreover,

. . . . €
the unit mass at O 1is the invariant measure for any Xn,

e > 0, and so Theorem 1.1 is not true, as stated, on the

whole interval [0,1]. However, if s, = 2 and wf, wi,
+++ are independent random variables uniformly distributed
on [-e,0] with e > 0 small enough, then a careful study

by our method of approaches of X; close to O yields that

invariant measures p® of X; having no atom at ©
weakly converge as =0 to the Lebesque measure on [0,1)]
which is F,-invariant.

Next, we shall prove a version of the shadowing
property which will be sufficient for our purposes.

Lemma 1.1. Suppose that Xor X1 xz,---,xn is a
6-pseudo-orbit, i.e., (I.4.1) holds true with dist defined

by (1.8) and & small enough. If

min min  dist(x;,a ) 2 s(A-1)"1  (1.19)

0<i¢n-1 0<j<v+1

with a introduced in Assumption 1.2 and A from

o’.."av+l
(1.15), then there exists a point y €[0,1] such that

aist(rFly, x;) ¢ s(a-1)7"

for all i = 0,*+-+,n. (1.20)
Proof. Notice that the failure of shadowing which we
exhibited in the case of tent maps is due, in fact, to the
existence of points in [0,1] having no preimages. But
under our conditions a 6-pseudo-orbit may contain such
points only if it contains also points close to aj,j =
0,*++,v+1 which we prohibit. By this reason if (1.19)

holds true then for any k = 0,1,--+,n-1 the interval J
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= (z: dist(z,x}) ¢ 6(A-1)-1} contains a connected

component of the set F—le+1 provided 6 is small

enough.
: : Nk :
Then the intersection kzo F Jk is not empty and any
point belonging to this intersection can play the role of
y in (1.20). a
Next, we proceed as follows.
Lemma 1.2. There exists C > 0 such that for any ‘

vy >0, v+ <1, each x €[0,1], and an interval Q C [0,1]
one has

e 1-

o

I (e 7,n,x,Q) { C mes Q (1.21) |

provided (log e)* 2 n > (log e)? and e 1is small enough,

- where mes 1is the Lebesque measure on [0,1] and

>, 3 _nE . . . 3 e

b Io(p,n,x,r)—Px( nin min dlst(xk,aj) > p and Xner).
0<k<n-1 0¢j<v+1

Proof. We employ the same argumants as in [Ki] for
the case of expanding transformations. Put

3 - e L€
Il(p,a,n,x,F)—Px(dlst(FXk,Xk+l) < 6 and (1.22)
A
> . , . 3 € /
~ min min dlst(Xk,a.) 2 p and X_€rI}. .
~ 0<k<n-1 0<j<v+1 ] n
: R
Then similarly to Lemma II.1l.1 it follows that
< .
N R
N 116 (77 n, %, 00 -15 (e 77, P nLx,0) | (1.23) ;
) -
] { (mes Q) exp(- a/3eB) N
v N
’ )
! N
. provided e is small enough. Ry
- If mes Q > e then one can choose points v,,--*,v,
6 9
N
LY

i
'*{.k q : .JC‘;'\'* . .:{;.’ 'W':J;’N’f-:"n. ';*l}.\.f W “u "-\'.n‘;, - \"u '-.;.'-- ) '.n.‘l\'(.;f\.'" .-.‘-‘ ,-\(- Ly -"l."__t.'-'.:“_.-"_'f r‘.r\- .-'.’- LONS.
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such that

QC U U (v;) and mes Q 2 2 ) mes U_(v,) (1.24)
1<ige, 1¢ige

where Up(v) = {w: dist(w,v)<p}.
If mes Q<e then we put & =1 and take Q itself in

€
place of Ue(vl). Thus

- - 1_ 1_
S Cu R Y P N S R . WA O I P L)
1$1$e6
The probability Ii(el-w,el-ﬁ,n,x,ue(vi)) involves
only el-ﬁ-pseudo-orbits w = (xo,'--,xn), X, = Xi, which
do not approach the points aj,j = 0,*+**,v+1 closer than
el_ﬁ, and so if ~+ > B, say =+ = 38, and e is small
enough ther. we can employ Lemma 1.1 to find a point vy = y“
whose orbit shadows this el-B-pseudo—orbit in the sense of
(1.20) with 6 = el™P. we proceed in the same way as in
the proof of Theorem II.4.1 by choosing points zijk’ j <
e~2P+1 such that one point 255k is taken in each
connected component of the intersection
-n . 2
(Uje(x) \ U(j-l)e(x)) N F Ue(vi) . Since n 2 (log e)
then we conclude similarly to (II.4.14) that
e, 1-3 1-
15173, 1P n,x,u_(v)) ¢ (1.26)
e, 1-28
).:-213 Iz(e lnlxlzijkIUe (Vi))
j<e 'K
where the sum is over zijk such that the orbit
Fezijk,e=o,~--,n does not approach the points
aj,j=0,-",v+1 closer than 61-23' and
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I;(p,n,x,z,F)=P;(dist(X;,Fez) ¢ p for all £=0,++-,n (1.27)

and x; €T} = I s I I

Up(Fz)

€ €
Apy (¥;) qpyn_l(yn)dy1 dy,-

Let 2B < a then by (1.9) taking into account that the

orbit of =z = zijk stays el—zﬁ-apart from 0 and 1 we
obtain that
I;(el-zﬁ,n,x,z,Ue(vi)) ¢ (1+eH)D [ (1.28)
U (Fz)
e1—2[3

3 y,-Fx
g | R

n
e 1-2P Uel-ZB(F z)ﬂUe(vi)

e_lr [yz-—F'yl]-ooe-lr [irl-l“y_n_l.]d D |
Fy, " e FY,_; 3 ¥y Yn-
Since F has a bounded second derivative apart from

the points aj,j=0,--~,u+1 and intervals (ye,Fez) do not
contain these points then

e . 8 8 -
1¥py1- FYp=(¥,,1-F Tt2)+F (F%2) (v,- Fi2)| < e27%F  (1.29)

provided e is small enough and ¢ = 0,+++,n-1. Next, we
set "é = Y,- Fez and replace in the right hand side of

, e
Yo+1~FY, (Mg4y=F (F 2)my
(1.28) each rFye[__—Z____ by rFe+1z =
which acccording to (1.11) and (1.29) may decrease the
right hand side of (1.28) by no more than a positive power

of e provided 0 < B8 <

0

In view of (1.15) we can
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employ the one-dimensional counterparts of Propositions
II.2.1 and II.3.11 to derive (1.21) from (1.28) and the
above arguments precisely in the same way as in the proof
of Theorem II.4.1 using obvious simplifications due to the
one-dimensional situation. ©

To complete the proof of Theorem 1.1 we shall need the
following result which enables us to estimate the
probabilities of arriving to small neighborhoods of the
points aj,j=0,-°-,v+1 which we had to exclude in Lemma
1.2.

Lemma 1.3. There exists C > 0 such that if ~ > 0

is small enough then for ahy X,y €[(0,1] and k 2 log(%)

P (k,x,U 1= (¥)) € ce” . (1.30)
€

Proof. By the Chapman-Kolmogorov formula for any

¢ < k one has

P (k,x,U ,_ (y)) = P® (k-2,x,dz)P®(8,2z,U . __(y)) (1.31)
61'7 el‘v
[0,1]

< sup  P(e,z,U . __(y)) ,
2€[0,1] e

and so if (1.30) will be proved for k = ¢ then it will

remain true for any k 2 @. :
Without loss of generality we can assume that A > 2 ;
in (1.15). 1Indeed, we can always ~hoose an integer r > 0 :
o
such that AT> 2 and then pass to Markov chains Y; = X;r 23
."_\
which are random perturbations of the map Fr satisfying 3:
N
Assumption 1.1 since F 1is Lipschitz continuous. The N
assertion of Lemma 1.3 proved for Y; will imply the %f

)

Pl g

desired assertion for xi itself. Thus we assume that S‘
A > 2. tﬁ
D
\4!

Under Assumption 1.2 we have

Nl Ly

o

...........
o« -
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sup|F'(x)| =D < ® (1.32)

X -3
'
Put
1 -1 1 )
¢ = [5B(log(D + 1)) © log(g)] , (1.33)
’
where 1 > B8 > 0 and ([*] means the integral part. Then 2

(D + 1)8* ¢ TP/ (1.34) R
-
In the same way as in the previous lemma we can pass .

to el-ﬁ—pseudo—orbits making only a negligible mistake in

our estimates. 1In view of (1.32), (1.34), and the &
continuity of F every el-B—pseudo-orbit Yo = X/ ¥ /0t Y,

satisfies 3
N

5

dist(le,yi) < e172P for a11 i=0,1,+°+,& . (1.35) A

’l

o

We shall introduce points zi,i=0,---,e by setting

z; = Flx if min dist(a.,le) 2 el-zﬁ and z; = a, N
0<¢j<v+1 J 3 N

if dist(aj,le) < el 2P por e small enough these o
define points 2z. wuniquely. By (1.35), -
max dist(z;,y;) < 2¢172P (1.36) A

0<i¢e -

i X

but for z; = F'x we have a better inequality (1.35). Z:
Thus taking into account (1.7), (1.9), and the Chapman- %
Kolmogorov formula we can write ﬁ
~

3

P®(e,x,T') ¢ Ig(e,x,r) + exp(-as3eP) (1.37) >
3

where 28 < «a, N
o
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€

18 (8,x,T) = p;(xieu(i) for all i=0,1,---,2 and X5€r)(1.38)
[ [ €
= [ - ] J Ik (Y1)Ipy, (¥2)* " "dpy,  (¥p)
500) (-1 (&) qp

I e-lrpx[ang‘z’)]

a,l
dy1- oodye S (1+& ) I * 0 e

g(0) (-1 (&)qp

o(Fy,_1/Y )]
-1 o (Fy,,v2)).... -1 e-1Ye L
X € rFy,[ . ] [3 rFye-l[ ” dy1 dye '
where u(1) = (vi dist(v,z;) < 61-23) if z, = Flx and

p(i) - {v: dist(v,z;) < 261-25} if oz, # Fix.

We cannot proceed precisely in the same way as in the
proof of Lemma 1.2 using (1.29) since the derivative of F
may have discontinuities at the points aj,j=0,---,u+1.

Let F;(zi) and FL(zi) be the right and the left
derivatives of F at zg, respectively. Put ny = Y{7Z
bi =24, " in, A(ni) = F;(zi) if ny 2 0 and A(ni) =
F;(zi) if n; < 0, i=20,--+,2. Then for e small

enough and Yy € U(l), i=1,++-,¢ one has

_ _ 2-5B
lo(Fy;,¥5,9) = myq + A(mpny - bl < e ' (1.39)

i=20,¢-,8-1 since by our choice of the points z; the

2 function into each closed

map F can be extended as a C
interval [yi,zi].
Replace in the right hand side of (1.38) each
U(Fyiryi+1) ni+1*A(ni)ni+bi
rFy. = by r, = .
i i+1

According to (1.11) and (1.39) this substitution may
decrease the right hand side of (1.38) by no more than a

positive power of e provided B < % . These will lead to
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> an expression which can be bounded by the integral
:M
YA
MO n +b
v":' € - o e 0 -1 1 0
o e = [ o] [, (27
J‘.' R1 IR‘ r
l‘l"
) - n,=A(n,)n,+b
l‘l. xelr [2 171 71 (1.40)
(A z (3
ﬁ' 2
oy
- Ny=A(My_,)N,_,+b,_
e xooox e~y [e e-1’Me-17"e-1l Liian, .
Y € 1 e
'i" ze
10
)
& N
b Define inductively
':‘: (3 [ [3
NS - - - - -
w0 Sp+1 = AGy) By + ey - by (1.41)
4750
4, where Ez = 0 and 91,92,--~ are independent random
)/
- variables with the distributions
l'.’
K
()
A PO, € ¥) = [ r, (man . (1.42)
) k
¢
o v
"4'
E{ It is easy to see that Ei k =0,1,*++ is a nonhomogeneous
L
:& Markov chain whose transition density from Ei =7n to
'_,::: . -1 C-A(n)n+b,
: Ek+1 = n has the form e r ———{ . Thus
z 3
o, k+1
Wy
1
) 3 —€
::;? I, (¢,x,T) = P(E, €T) . (1.43)
s By (1.41),
[
o
L e-1 L
" :e —4 :e LR 2 ) :6 - = -
= = ) A(ES_ )+ A(E5) (8- e Yb, 1) + €0,- b, .. (1.44)
- k=1
)
I For any sequence «k = (xl,---,xe_l) kK, = +1 of +1 and -1
‘ = * i = = '
¢ we put Bi(x) = F+(zi) if Ky +1 and Bi(x) F_(zi)
if k; = -1l. Denote also
Y
5
A
v:‘
W
KX
|l
l"
&
'l. - » L] P A I RN W - . LY . "e N e . W s e e e, e~ - . . .
i M A l(ﬁ)‘ ."- u*. a VN o '(.f~~f'- .‘ N ALY §, o, e Y . o 2 st .
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3,89, ¢

¥y
2 e

2
o
-1 :::-_
S (k) = e) B,_j(k)=--B, () (8,-¢ ‘b, ) + e6,- b (1.45) N
“e e-1 13 3 k-1 e” Pe-1 't ot
k=1 :::j,.
Since by (1.15), IBi(x)l >N for all i and « we o~
o
derive in the same way as in the proof of (II.2.7) that gi
‘:~I
Y
P(ES (k) €T) ¢ &t A"¢ mes T (1.46) o
o
for all « = (k,,***,K ). Then we obtain Bt
1 e-1 15N
N,
P(E§ € T) ¢ } P(E5 (k) € T) Ee‘l[%]e mes I' . (1.47) (3
K o)
Since we assume that A > 2 then taking [ =1U 1=y (V) and -~
)
¢ from (1.33) we derive (1.30) from (1.31), (1.37), and "~
the arguments following after (1.37) together with (1.43) %‘
and (1.47), provided ~ > 0 is small enough. O Qh
Now we can complete the proof of Theorem 1.1. From 3:-
Lemma 1.3 and the Markov property it follows that :f
4
- - ha
pi min 1 min dist(x;,a.) < el™Y ¢ cne™ . (1.48) 5%
nZRZIOg[E v+1>320 J o
O
%&
Thus taking n = n(e) = [2(log e)?] and ¢ = &(e) = S
(log %] + 1 we obtain from (1.21), (1.48), and the Markov tj'
property that for any interval Q C [0,1], e
N
b
o
P°(n,x,Q) ¢ P°(X® € Q and min min (1.49) A
X n 1. p+12320 N
n2kglog(;) < :‘:‘.
7
3 1-~ 1/ € y
3 2 -
dlst(Xk,aj) > € )} + e -J‘ P-(2,x,dy) \:
[0,1)] p‘:-
P\-"
Y
v ¥ e
e, 1= /2 /2 "
Io(e ,N=8,y,Q) + e { Cmes Q + ¢ ®
N
‘\J'
N
nY
N
®
~7-
Se
e e T S O SR S eSS S D G S SR L e
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K provided e is small enough. Hence for any invariant

5

;: probability measure ue of X; one has

W

[} '3 1/

& ué(@ = au® (x) P(n,x,Q) { Cmes Q + e 72 . (1.50)
X [0,1]

which being true for any interval Q C ([0,1] implies the
assertion of Theorem 1.1. O

v Adapting the arguments of Section 2.6 to the one- K
‘ -
I 3 -
K dimensional piecewise C? and expanding maps F 1in the )
L 3
Y same way as above one obtains the entropy convergence
result provided v = 1,
C'; o
™ .
R Theorem 1.2. Let I = (Q1,°°°,Qk) be a partition of '
§ [0,1] into intervals with sufficiently small lengths and ]
»
- suppose that v = 1 which means that invariant measures
5j ue of X; weakly converge to the unique absolutely
: continuous F-invariant measure p. Then
7 ]
4 : € €
y lim h™(6,{") = h (F) (1.51) y
'2 e=0 H .
" o
b‘ &
W, <
i where (6 ts the partition of the sample space Q into ‘
the sets F; = (w: Xi € Qj}, hu(F) is the entropy of F K
13 relative to the measure pu, and h&(e,(e) is the entropy :
g of the shift transformation 6. -
¥
)9 2. Misiurewicz's maps of an interval. N
- In this section we shall discuss certain points
/ concerning random perturbations of one-dimensional maps X
. satisfying Misiurewicz's conditions from [Mi]. For the )
3 detailed exposition we refer the reader to Katok and Kifer N
i [KK]. :
& We shall consider random perturbations x; satisfying -
Assumption 1.1 of maps F of the interval having a
’ »
Lo
3l -
$ :
’ u
) )
N K
-~ -
L}
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non-positive Schwarzian derivative, no sinks and future )y
orbits of critical points staying away from critical
points. We shall restrict ourselfs to the most widely ‘
considered one- parameter family of maps 8

)
Fy: X = 4Ax(1-x) (2.1) ;;
for which the above conditions are satisfied for a set of QJ
parameters A having cardinality of the continuum. }‘
Assumption 2.1. The map F, has the form (2.1), it o

has no stable periodic orbit, and 5
K's
%

i — -

o

-21-¢ 7, = UFL (3) . (2.2) s

n2l '.

»
According to Misiurewicz [Mi] any map F, satisfying ~
Assumption 2.1 possess exactly one absolutely continuous Q~
"h

invariant measure Hp which is ergodic. ;
A Y

The following result was proved in Katok and Kifer ::

YA

[KK]. b
~

Theorem 2.1. Suppose that random perturbations Xi ~\

of the map F)\ meet the conditions of Assumption 1.1 and !f
F)\ satisfies Assumption 2.1. Then invariant measures ue ‘
of X; weakly converge to Hp as € - 0. :._
A s

Example 2.1. Similarly to the previous section we can 23
consider the following model of random perturbations jt
satisfying our conditions. Let ¢,,¢,,°** be independent :E
random variables with the same distribution having a smooth ;?
density p(x) concentrated on [-1,1]. Suppose that A {
is a fixed parameter such that % <A, <1 and the map :f
Fy satisfies the above conditions. Then for e < 1-Aj o
o _'-
the composition of independent random transformations ]
Fko+€¢i' i=1,2,+**+ generates a Markov chain S:
3 . \
Xn = Fx tep o OFA teg X which, considered on the .;
o n o 1 s
invariant interval [4A_ (A +e) (1-A -e)-e, A +e], belongs to )
W
)
0\l
»
\

b
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e
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the class of random perturbations satisfying our
conditions. The case A 2 =1 must be studied separately
since then we cannot exclude from the consideration the
point 0 which is fixed for all F, . The transition

probability of X; can be written in the form

'3 _ — - -1- _
P& (x,I) = P{FA°+6¢ix€F} = Plew; €(x(1-x)) T - A} (2.3)
= (4&)((1-)())-1 ‘I‘ p[% [Hﬁ - 7\0]] dy
r
Thus the transition density p°(x,y) = (4r:x(1-x))_1

1 o e
Ple 3X(1-%) does not have the form q (y Fon) needed
for an application of the Frobenius-Perron operator method

described at the beginning of the previous section.

Remark 2.1. The stability of measures Hp with
A
respect to random perturbations is especially interesting

in view of the fact that in general there is no stability
with respect to deterministic perturbations in this case.
Indeed, consider Fk with A <close to 1. Clearly, F1

satisfies Assumption 2.1 and it has absolutely continuous

invariant measure with the density = Y(x(1-x)) /2 . put

- ni S I EO | - nl, _
n, = min{n>1: FA(Z) 2 2). Since Fl(z) = 0 for all n>1
n

then if FAA(%) > % by the continuity one can find S (A)
| 1 1
such that 1 > B(A)>\N and FB(A)(E) =3- Hence 3 is a

periodic point of Fﬁ(x) and its orbit is attracting since

Fi(%) = 0 for any A. Thus we obtained a sequence A 1

such that any F

k!
has an attracting periodic

>

k

orbitcontaining and only one point of this orbit can be

to the right of =. The invariant measure vy supported

k
by this periodic orbit is stable with respect to random

AL a0 ..\ .' '\~ A SR T L AL -‘.\.-'Ah'-,,", '.\. ., -*".‘\..3\\ ~~ -.‘\\’v.“- ‘{“f‘l“f‘f‘ A -pn -..q"-"ﬂ
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perturbations since the complement of its basin of

attraction has zero Lebesque measure (see Collet and
Eckmann {CEl), Proposition II.5.7). On the other hand,
measures Uy do not converge as Akal to the smooth
invariant measure of F1 since the above periodic orbits

have only one point to the right of % and so all weak

limits of v, have support in the interval [0,%]. Similar

SA £ with A,

examples can be constructed for Ak

satisfying Assumption 2.1.

The maps FA do not necessarily have the shadowing
property for all pseudo-orbits. However one can obtain the
following result (see Katok and Kifer [KK], Lemma 2.3).

Lemma 2.1. Suppose that FA satisfies Assumption 2.1

and let Xor®® i Xy be a eB
(I.1.4) holds true with F = F

-pseudo=-orbit of FA’ t.e.,

and dist defined by (1.8).

A
There exists a constant C > 0 depending only on FA such
that if 0 ¢ v ¢ B/2 and
1 v
ka - 5[ > 2Ce’', k = 0,*++,n-1 (2.4)
then one can find a point y so that
aist(FXy,x,) ¢ ce? 77, x = 0,-+-,n. (2.5)
Since Fi(%) = 0 then, of course, the maps F, are

not expanding. However, Assumption 2.1 yields some
substitution for expanding which turns out to be sufficient
both for Lemma 2.1 and other aspects of our approach.

Lemma 2.2. Suppose that FA satisfies Assumption
2.1. There exists mn > 1 such that for any p > 0 one

can find an integer Mp> 0 so that

M .
| (F,P) (x)| 2 n provided  min |Fyx - %l > p  (2.6)
0$i<Mp
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AT
I (F) ' (x)| provided dist(Fyx,9,) 2 o (2.7) ]
l\ d
o
. for any x € [0,1] and n 2 1.
& ,
«m For the proof we refer the reader to Misiurewicz [Mi],
' Theorem 1.3 and to Katok and Kifer [KK], Lemma 2.2.
:k Under Assumption 2.1 the map Fy becomes expanding in :
xS the sense that ](Ff)’(x)l grows exponentially fast in n )
;Q for points x whose orbit stay away from HA. Indeed, ‘
N.
JS‘ .
i. suppose that fo # % for all k = 0,1,°++,n. While ng
‘2
" is not too close to % then the derivative grows
'
ﬁ exponentially fast by (2.6). If for some Kk, |F¥x - %l = p
' ¢
iﬂ then
!"
. k+1, . _ k,.
s | (FY77) x| = 8Xhp | (F)) x| (2.8)
N
S A
. and
e . k+1 . k+1 1 :
b (2.9) dist (FA X, 9x) < dlst(FA X, FA(E)) = 4Ap?2 Y
/e Thus in view of (2.2) and (2.9) in order to have another
]
chance to get close to % the orbit must accumulate the
o4
Y . . - . . .
derivative of order p 2 which according to (2.6) will take
Z; of order log(%) steps. If ep =c, log(%) is this
!
k+é +1 " -1
number of steps then |[(F ° )'x]| =|(FA)‘x|C2p
~
8
o]
N = I(Ft)'xl Cz(el/c‘) P which again leads to the
3 exponential growth.
Still, proceeding with our method one has to face
. certain complications due to small derivatives of F, near :
l‘ '{
N %. Lemma 2.1 enables us to employ the linearization -
b
' procedure if we restrict ourselfs to paths of xi which »
y :
Y,
W
l‘ ‘
: A
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are e -pseudo-orbits staying outside of the :H
2Ce” -neighborhood of the point %. However, this will lead E{
to orbits of F, which may approach % as close as i‘
C(2e7+eB-7), and so the derivatives of F? may be i
sometimes that small. By this reason a direct counterpart t:
of Proposition II.2.1 will not work here. The following 4
result proved in Appendix to Katok and Kifer [KK] saves the E
situation. L
Lemma 2.3. Suppose in addition to Assumption 1.1 that ';

for each x € [0,1] the number of points of discontinuity :2
of rx(f) in § is bounded by a number N independent of E,
x and on each interval of continuity rx(f) is Lipschitz {‘
continuous tn §. For arbitrary points Xprto Xy € [0,1)] ﬁf
let 81,-..,9n be independent random variables with .il
a ?:

distribution functions P{Bi < a) =_£ rxi(f)df. Then there r
exist C,x > 0 independent of Xyt Xy and n such ?:
that for any nonzero numbers aj,tctsag the distribution ;
function of the random variable :f'
[ s a‘?]-l/z Y aj(e, - E9)) :

1¢i<n 1 . itti i o

1<1i<n -

has the derivative, i.e., the probability density function, -ﬁ
satisfying 2
)

22 oy ¢ celC] 2
1’ 'n N
where Esi is the expectation of Gi. :?
We discussed here only few arguments involved in the oty
proof of Theorem 2.1 which is pretty long and can be found tw
in Katok and Kifer [KK]. :;’
Remark 2.2. One can adapt the arguments of Section :;

2.6 and prove Theorem 1.2 of the previous section also for i:
maps FA satisfying Assumption 2.1. E+
Remark 2.3. Another class of maps with a critical Sﬁ
peint (and so not uniformly expanding) possessing :f‘
absolutely continuous invariant measures was studied by %
Collet and Eckmann [CE2]. For instance, for a set of ?
Yy

N

'

~

e ey T g B L O S S S Sy S

o oo
A



PRI P TRTY e’ N aal At e S et et N A O A A A e
-
kS

parameters having a positive Lebesque measure the one- »
parameter family of maps Fy: (0,1] » (0,1] given by the ﬁ
o]
formula .
1-2]x - 2| if Ix - 2] 2 A .
F,x = { - »
A 1-a-(x - )2 a7 if Ix - L] <1, "
2 2 ;-.
0 < A < % satisfies the conditions of [CE2]. Collet [Col] ﬁ
'N
studied random perturbations of Boyarsky's type for this y:
2
class of maps employing the Frobenius-Perron operator -
method described at the beginning of Section 1.1. It is ::
not difficult to adapt the machinery of Katok and Kifer jf
(KK] in order to prove Theorem 2.1 for this class of maps ;:
employing results of Appendices A and E from Collet [Col) ir
which actually provide necessary dynamical prerequisites 4§
I
for our approach similar to Section 2 of Katok and Kifer :;_
N Y
[KK]. :“;
3. Lorenz's type models. »
In this section we shall discuss random perturbations .
’
of model dynamical systems which are believed to describe ﬁ:
: . !
maln features of the Lorenz attractor (see Guckenheimer and ‘3:
: N
Holmes [GH] or Sparrow [Sp)). 4
In 1963 E. Lorenz [Lo] published a paper describing a ;&?
qualitative study by numerical integration of the following 3
three-dimensional system of cordinary differential equations ok
with three parameters o,r,b>0, i
S5
NG
l-.
ax _ _ N
ac - o(y-x) 2
o
[
%%=rx-y-xz (3.1)
dz _ _ -
JE = XY bz -
.\
derived from a model of fluid convection. Computer <.
R
experiments indicated that for certain choice of parameters -
L
o,r, and b the flow F°C generated by (4.1) has an ﬁ:
. 4
attractor (called now Lorenz's) where orbits of Ft 7,
R
l\.
o~
=
~d
o
<
N
o

£,

- . - e e
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exhibit a chaotic behavior.
The divergence of the vector field (o(y-x), rx-y-xz,

xXy-bz) equals ~(o+l1l+b), and so Ft contracts the volume

e-(a+1+b)t for t>0. Furthermore, consider the

Lyapunov function V(x,y,2z) = rx2+ay2+a(z-2r)2 then

by

av(Ft(x,v,2))
dt t=0

= -20 (rx?+y°+bz2-2brz) . (3.2)

Let ¢ be the maximum of V 1in the bounded domain where

%% 20 . If &6 >0 1is small enough then it is easy to

see that all orbits of Ft eventually enter the bounded
ellipsoid ¢ = {(x,vy,2): V(x,Y,2) { c + &8}). Thus we
conclude that all orbits tend towards a bounded set of zeroc

volume (see Sparrow [Spl, Appendix C).

Let Xi be diffusion random perturbations of the flow
Ft described in Example II.1.3. For any p>0 we can
consider Markov chains Y;’p = X;p which are random

perturbations of F = FP. 1In view of (3.2) it is easy to
see that conditions of Theorem I.1l.7 are satisfied for

Markov chains Y;’p. Thus all their invariant measures
have support in § and when e - 0 then all weak limits
of these measures are supported by a bounded set of zero

volume. In particular, this is true for invariant measures

[

K of diffusion processes X;

£
The most popular choice of parameters leading to what

is usually called the Lorenz attractor is o = 10, r = 28

and b = 8/3. The origin O is the stationary point of

the hyperbolic type for the system (3.1). It has the

two-dimensional stable manifold ws(O) and the
one-dimensional unstable manifold consisting of two
branches Fland F2. The plane @I = {((x,Yy,2): 2z = 27)
contains two more hyperbolic fixed points O and O

1 2
which have one-dimensional stable manifolds which are lines

LR RY. S K
0 ..A.Q 4.
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contained in I and two-dimensional unstable manifolds

transverse to 1II.

Next, one considers the Poincare return map G of the
plane T to itself. Namely, if v is a noint on this
plane and the integral curve containing v goes downwards
when intersecting the plane I at v then Gv 1is the
point of the next intersection of the integral curve with

I. The map G 1is not defined on the intersection ws(O) n
I and G maps points approaching this intersection from
one side close to Q1 = Fl N I while points approaching

WS(O) N I from another side are being mapped close to
Q2 = Fz nmo.
By a change of coordinates we can reduce the study to
the transformation G mapping the square S = {(X,y):
Ix] ¢ 1, |yl ¢ 1y ¢ T into itself.
The right hand side curvilinear triangle is the image of

the top rectangle S, = ((x,y): Ix] ¢ 1, 0 <y < 1) and
the left hand side triangle is the image of the bottom
rectangle S, = {(x,y): |x| ¢ 1, -1 ¢ y < 0).

Taking into account that the system (3.1) is invariant
with respect to the transformation x = -x, y = -y, z = 2

we conclude that the map G can be represented by means of
2

function fl(le)r gl(XIY)r fZ(XIY) = ’fl(-xr-Y); and
g,(x,y) = -g,(-x,~y) in the following way
G(x,y) = (£f;(x,y),9;(x,y)) if (x,y)€ S;,i =1,2 . (3.3)

We assume that the functions fl and 9, (and so also f2

and g,) can be extended continuously to W= (|x] ¢ 1, y=0)
so that

.y

lim (fi(le)l gi(le)) = Q. i=1,2. (3.4)

y~0 1

The map G has also two hyperbolic fixed points o, and

02. One can proceed with the ergodic theory of the map G,

Sl . AN bbb duds
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as well as, of the flow Ft provided G satisfies some
hyperbolicity conditions. These were not yet established
rigorously. However the following conditions which
according to Afraimovich, Bykov, and Shilnikov [ABS] yield
the hyperbolicity of G were checked with the help of a
computer by Sinai and Vvul [SV]. These conditions are

Il < 2. {522 7 < =
ax !

L. [ -
]y Y PR ) P 2 | B
dy | ay dx L ay ! *

ag.)-1|| |9f 3 1(af a 3 i

S Y et | | et Y i g WA

ay ax Keh'%

where Ih(x,y)# = sup |h(x,y)]|.
X,Y€S
The Lorenz attractor for G 1is K = N ¢"s and the
0<{n<w
corresponding attractor for the flow Ft can be written in
the form A = U FtK. The attractor K consists of
-0t <0

smooth curves stretched along the y-axis. Bunimovich and
Sinai [BS] showed that there exists a G-invariant
probability measure v on K which is absolutely
continuous with respect to the Lebesgue measure generated
by the length on smooth curves forming K. This property
determines the measure v uniquely and this measure
possesses essentially the same properties as the well known
Sinai-Bowen-Ruelle measure (see Bunimovich and Sinai [BS)

and Bunimovich [Bu]). The measure v generates the unique
Ft-invariant measure u on A such that
u( U FT)

Oé:gs c=0 = ¥ () (3.6)

for any Borel subset I C K whose distance from ws(ol) U

ws(oz) is positive.
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Theorem 3.1. Suppose that the conditions (3.5) hold

. 3 . ,
true. Then invariant measures pu of diffusion random

perturbations Xi weakly converge to p as e = 0.

The proof of this result proceeds by the method of

[Ki]. In place of processes Xi we shall consider Markov

. [ {
chains Yn = an,

> 0 which are random perturbations of the diffeomorphism

F = F°'. The number r is chosen so that an application of

F* with [t] ¢ r does not destroy expanding and

contracting properties of the map G in the transverse and

n=0,1,2,*++ for some small but fixed r

parallel to WS(O) directions, respectively. Next, if we

consider the time n = n(e) of order (log e)2 then we
may restrict our attention to a neighborhood U of the
attractor A.

Lemma 3.1. Let U be a sufficiently small
neighborhood of the attractor A. There exists a constant

C > 0 such that if XqeXqs**e,x, is a b-pseudo-orbit of

F = Fl staying in U and satisfying

min dist(x,, W5(0)) > C& (3.7)
0<i¢n 1

then one can find a point y € U such that

max dist(xi,Fly) { Cné (3.8)
0<i¢n

where Ws(o) in (3.7) denotes a connected component of the
stable manifold of O in U containing O and dist here
is the Euclidean distance.

In order to obtain this kind of the shadowing one
combines the arguments leading to the shadowing for the
hyperbolic transformation G together with the
corresponding arguments valid in a neighborhood of the
hyperbolic fixed point O. Namely, in the p-neighborhood of
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WS(O) with p > 0 small but fixed the expanding and ;.
Vo
contracting in transverse and parallel to ws(O) .?
directions, respectively, is due to the presence of the i
hyperbolic fixed point 0. Thus if the orbit of the flow 'y
. >
starts in the p/N-neighborhood of WS(O) with N 1large 5:
. -
enough and exits from the p-neighborhood of WS(O) then :
expanding and contracting will be already accumulated ]
enough not to be destroyed until the orbit pierces S. For N
orbits staying outside the p/N-neighborhood of WS(O) we ;\
derive expanding and contracting properties along them from jf
by
the corresponding hyperbolicity properties of G which .t
follow from (3.5). The condition (3.7) enables us to avoid v
. ‘J
difficulties connected with the discontinuity of G. -
Next, employing the above arguments we derive :j
“'Q
similarly to Lemma 1.2 the absolute continuity in the r
unstable direction of probabilities that Y; = X;r arrives .i
-‘.
to a set for n(e) ~ (log e)° steps along paths which do N
1- t ¥
not approach WS(O) closer than e~ '. Since the flow F )
:\
¥ stretches in the transverse to WS(O) direction then in K
' the same way as in Lemma 1.3 we conclude that for n > ;‘
log(%) and v > 0 small enough Y; may belong to the ;
el'q-neighborhood of WS(O) with probability not exceeding &?
Y
e’. After that we complete the proof of Theorem 3.1 in the b
same way as the proof of Theorem 1.1. We note that the ﬁ‘
technical prerequisites for our method can be found in ;
A Y
i Bunimovich and Sinai [BS] or easily derived from their NS
{ arguments. NG
Remark 3.1. One can generalize this approach in order f
hY
to apply the method to situations where some kind of L
hyperbolicity conditions holds true only for an appropriate :\E
return map of a flow and not for the flow itself. N
.:\
-
. 3
3
3
o~
o
' ]
i
)
ORI SR A RNt TR ks RGN AN IGRAC AN AR NI N A X SR NN ":



HY NIR RN BN

[ABS]

(BS]

(Boy]

(Bu]

(CE1]

[CE2]

[CFS]

(Col]

(GH]

b A0 ata" AT I A S ahCafin’ gig” S0 PR/ aNEA AL rp grL g N BRI A 0 A it LA A R A S R

Bibliography

V.S. Afraimovich, V.V. Bykov, and L.P. Shilnikov,
Oon structurally unstable attracting limit sets
of Lorenz attractor type, Trans. Moscow Math.
Soc. 1983, Issue 2, 153-216.

L.A. Bunimovich and Ya. G. Sinai, Stochasticity
of the attractor in the Lorenz modr;, in
Nonlinear Waves, ed. A.V. Gapoonov-Grekhov,
Nauka, Moscow, 1979, 212-226 (in Russian).

A. Boyarsky, Randomness implies order, J. Math
Analysis Appl. 76, (1980), 483-497.

L.A. Bunimovich, Statistical properties of Lorenz
attractors, in: Nonlinear Dynamics andrR
Turbulence, ed. G.I. Barenblatt et al., Pitman,
Boston, 1983, 71-92.

P. Collet and J.-P. Eckmann, Iterated Maps of the
Interval as Dynamical Systems, Birkauser, Boston,
1980.

P. Collet and J.-P. Eckmann, Positive Lyapunov
exponents and absolute continuity for maps of the
interval, Ergodic Th. and Dynam. Syst. 3, (1983),
13-46.

I.P. Cornfeld, S.V. Fomin, and Ya.G. Sinai,
Ergodic Theory, Springer-Verlag, Berlin, 1982.

P. Collet, Ergodic properties of some unimodal
mappings of the interval, Preprint, Inst.
Mittag-Leffler, 1984.

J. Guckenheimer and P. Holmes, Nonlinear
Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields, Springer-Verlag, New York,
1983.

Y

N @

LY N
DO

AN
.

"

A I
L v'.".l' I..l

.
)

B

@ NN

P ."*.'-'.Ixs\v..".'..'.' e
' P4 Vet e
Wy - \ '*.'I‘.':\‘ I

P NP
..lll. I.&

(R



¢ gk ('Y Y Pl \'W

et

[Ki]

[KK]

[LaY]

[LiY]

(Lo]

(Mi)]

Sp]

(SV]

. . . o . oanana A "
.95 A fad AW W W T NARSAEASAE GA AL AlA war LYy PR

A.0. Golosov, Small random perturbations of
dynamical systems, Trans. Moscow Math. Soc. 1984,
Issue 2, 251-271.

Kodansha, Amsterdam, 1981.

Probability Appl. 8 (1963), 1-21.

Yu. Kifer, General random perturbations of
hyperbolic and expanding transformations, J.
D'Analyse Math. 47 (1986), 111-150.

A. Katok and Y. Kifer, Random perturbations of
transformations of an interval, J. D'Analyse
Math. 47 (1986), 193-237.

A. Lasota and J.A. Yorke, On the existence of
invariant measures for piecewise monotonic
transformations, Trans. Amer. Math. Soc. 186
(1973), 481-488.

T.Y. Li and J.A. Yorke, Ergodic transformations
from an interval into itself, Trans. Amer. Math.
Soc. 235 (1978), 183-192.

E.N. Lorenz, Deterministic non-periodic flows, J.
Atmos. Sci. 20 (1963), 130-141.

M. Misiurewicz, Absolutely continuous measures
for certain maps of an interval, Publ. Math.
I.H.E.S. 53 (1981), 17-51.

C.Sparrow, The Lorenz Equations: Bifurcations,
Chaos, and Strange Attractors, Springer-Verlag,

New York, 1982.

Ja.G. Sinai and E.B. Vul, Hyperbolicity

conditions for the Lorenz model, Physica 2D,
(1980), 3-7.

e

. a_n
»
[y

L4

i T I 3 Y

” P -
-‘:’lc-ﬂﬂl'.r\{.'vfl"?—’,} LN

Vrrre?d

SN

(.4.-.P '.o .
I RO LI

%% S

R )

S

L

LA L

S AT AW IR
AR AT AR

AR

P2 MV g% ¢
AL N

y

)

.

.,.,.
o



-

OSSN o ....:.\.. AT

S AN PR . - AL
[y £ et “ .(;. Y G
\IM -f\.r .?\J\T\..\.M-\f-n. ,. r\f\f&fﬂ.\f\- , .rN I\f\fuv_ e ....-.\.\ > s-...m ..‘...\. AR .. .\..-“N.-V ®
o 4 - H LAY L LY ., .. . . P

$l\...>l-.£ RARRAREE J e -.n.u..ﬂm; fﬁ -.,Vh,rh..f t...f...-\-.\..-r-y I N ..\...rqr.ff

>

Fa

L]

RN MK M A v W

(o

I ol

K
s

o0

NN

- -
-.' ST

-
-

SOSEL

&7

A
L) -

"
‘2,

1

(%30
:,‘,l,

ig¥
\J
.‘.



